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Naturally invariant measure of chaotic attractors and the conditionally invariant measure
of embedded chaotic repellers
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We study local and global correlations between the naturally invariant measure of a chaotic one-dimensional
map f and the conditionally invariant measure of the transiently chaotic mapf H . The two maps differ only
within a narrow intervalH, while the two measures significantly differ within the imagesf l(H), where l is
smaller than some critical numberl c . We point out two different types of correlations. Typically, the critical
number l c is small. Thex2 value, which characterizes the global discrepancy between the two measures,
typically obeys a power-law dependence on the widthe of the intervalH, with the exponent identical to the
information dimension. IfH is centered on an image of the critical point, thenl c increases indefinitely with the
decrease ofe, and thex2 value obeys a modulated power-law dependence one.
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I. INTRODUCTION

A picture of the asymptotic behavior of a permanen
chaotic dissipative dynamical system is given by a stra
attractor @1–3#. A more detailed description of the syste
involves the naturally invariant measure@1–7#. The naturally
invariant measure provides information on the frequency
visits by typical trajectories to any given region on the
tractor.

A picture of a transiently chaotic system is given by
invariant nonattracting chaotic set, called the chaotic repe
@8–13#. A trajectory starting close to the repeller exhib
erratic motion practically indistinguishable from the motio
on the chaotic attractor for a long time. After the chao
transient period, the trajectory escapes to some~possibly
nonchaotic! attractor @8–13#. Some regions of the phas
space containing the repeller are more likely to be visited
long lived chaotic transients than others. This likelihood
described in terms of the conditionally invariant measu
also referred to as thec measure@8–10,14–17#.

The conditionally invariant measure was invented and
terpreted by Pianigiani and Yorke in Ref.@14#. A rigorous
mathematical analysis of thec measures can be found i
Refs.@14–17#. Their existence and uniqueness has been
tablished for a broad class of systems@14–17#. The c mea-
sure~call it mC) is not invariant under the systems dynamic
say a transiently chaotic mapf H . Instead, its image underf H
is proportional to itself:

mC„f H
21~B!…5exp~2a!mC~B!, ~1!

whereB denotes a set in the phase space, whereasa denotes
the escape rate of chaotic transients from the repeller@8,9#.
Equation~1! can be utilized for the calculation of the esca
rate from the strange sets@8,9#.

Let us define the problem studied in this paper. We c
sider unimodal maps on the interval,f (x): I→I ,R, with a
smooth quadratic maximum assumed at a critical pointxc .
We assume thatf is chaotic, with a chaotic attractorA, and a
naturally invariant measuremN . The information dimension
of the attractorA is D151.
1063-651X/2002/65~3!/036218~9!/$20.00 65 0362
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Let H5(j2e/2,j1e/2) be an interval on the attracto
such thatmN(H).0. The regionH will be referred to as the
hole. Due to ergodicity, a trajectory started from a rand
initial condition will eventually enter the holeH @2#. How-
ever, there is a set of points onA yielding trajectories that
never enter this region. This set of points is a chaotic repe
~call it R) embedded within the attractorA @18–20#. Chaotic
repellers embedded within chaotic attractors arise in the c
text of communicating with chaos@18–20#.

Since chaotic repellers are typically associated with tr
sient chaos, we may ask: Is there a transiently chaotic ma
which the embedded repellerR corresponds? The repellerR
governs the dynamics of the transiently chaotic map wit
hole @14–22#,

f H~x!5H f ~x!, xPI\H

outside ofI , xPH.
~2!

Here, mC denotes thec measure corresponding to the ma
f H , and the embedded chaotic repellerR.

In many physical or numerical experiments, the pha
space is covered with cells from a fine grid, and probabi
measures are visualized and analyzed by using such g
@1–3,7,8,23#. Imagine that we cover the intervalI with bins
B from a grid of unit sizeeB<e. In this paper, the correlation
between the naturally and the conditionally invariant me
sure is analyzed by using such a grid. Local correlations
described in terms of the relative local difference

d r~B!5
umC~B!2mN~B!u

mN~B!
. ~3!

A quantitative description of the global discrepancy betwe
the two measures is characterized in terms of thex2 value

x2~j,e,eB!5(
B

@mC~B!2mN~B!#2

mN~B!
5(

B
ud r~B!d~B!u,

~4!

whered(B)5mC(B)2mN(B) @24#. The outline of the manu-
script and the main results are as follows.
©2002 The American Physical Society18-1
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In Sec. II, we present numerical analysis demonstra
that in most of the bins that cover the attractor,d r(B).0.
Significant differences between the two measures oc
within the first l c images of the holeH, where l c denotes
some critical number. In other words,d r(B) is significantly
larger than zero forB, f l(H), 0, l< l c . These differences
will be referred to as the gross differences between the
measures. Since the number of bins that cover the firsl c
images of the hole is;e/eB , the resolution with which the
gross differences are observed is given in terms of the r
h5e/eB>1, also referred to as the grid-refinement para
eter. The fine differences between the two measures
occur at the iterates of the critical point.

In Sec. III we discuss the way in which the fine diffe
ences emerge in the histogram representingd r(B) with the
increase of the grid-refinement parameterh. We will show
that the fine differences appear as sharp, isolated spike
the d r(B) histogram.

In Sec. IV, we present the main results of this manuscr
The gross differences are studied analytically. We will de
onstrate the existence of two types of gross differences
tween the two measures.

~1! If j is a typical point on the attractor, then the critic
number l c is small, and independent ofe!1. The critical
numberl c is determined by the rate at which the images
the hole get stretched under the systems dynamics. The m
nitude of the global discrepancy between the two measure
correlated with the visiting frequency by typical trajectori
to the hole,x2;mN(H). As a consequence, thex2 value
obeys a power-law dependence on the size of the h
xjh

2 (e);eD1. ~The parametersj andh are written as indices
since they are held constant.!

~2! When the pointj is not typical, a different type of
correlation may occur. Ifj lies on an image of the critica
point xc , then the magnitude ofl c is primarily determined by
the size of the holee. The critical number increases approx
mately logarithmically with the decrease ofe, i.e., l c(e)
; ln(1/e). Consequently, thex2 value obeys a modulate
power-law dependence one: xjh

2 (e); ln(1/e)eDmN
(j), where

DmN
(j) denotes the pointwise dimension ofmN at j.

In Sec. V we present the main conclusions of this pap

II. NUMERICAL COMPARISON OF µN AND µC

Let us recall the definition of the naturally and the con
tionally invariant measures corresponding to the origi
map f, and the modified mapf H , respectively. Imagine a
smooth initial probability measurem (0) on the interval
I , m (0)(I )51. The evolution ofm (0) under the mapf leads to
the measuresmN

(1) ,mN
(2) , . . . ,mN

(T) , . . . , andfinally to the
naturally invariant measure of the mapf , lim

T→`
mN

(T)

5mN , mN(I )51 @1–5#.
The evolution ofm (0) under the mapf H leads to the mea

suresmC
(1) , mC

(2) , . . . ,mC
(T) , . . . . Consider the action of the

map f H on the measuremC
(T) , T>0. The content ofmC

(T)

within the holeH @mC
(T)(H)# is mapped outside of the inter

val I. Imagine that we multiply the resulting measuremC
(T11)
03621
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by @12mC
(T)(H)#21. This procedure asserts thatmC

(T11)(I )
51, ; T>0. In the limitT→`, the measuremC

(T) converges
to the conditionally invariant measuremC of the map f H ,
while @12mC

(T)(H)#21 converges to the constant expa ~a
denotes the escape rate from the repellerR, see Eq.~1! and
Refs.@8,9,14–17#!.

Figures 1 and 2 illustrate the action of the original mapf,

FIG. 1. ~a! The first image of a uniform probability measur
under the mapf represented by a histogram.~b! The content of the
naturally invariant measure within a binB, against the position of
the binx. The size of the bins iseB5531024.

FIG. 2. ~a! The image of a uniform probability measure und
the mapf H represented by a histogram.~b! The content of thec
measure within a binB against the position of the binx. ~c! d r(B)
against the position of the bin. The positions of the first five imag
of H are indicated by arrows. The parameters corresponding to
figures are as follows: For~a! and ~b! j50.4,h520, ande50.01.
For ~c! j50.4,h520, ande50.002.
8-2
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and of the modified mapf H , respectively, on a uniform ini-
tial probability measurem (0). For all illustrations we utilize
the logistic mapf (x)5rx(12x), at the parameter valuer
53.8. Parametersj ande defining the modified map~s! are
written in captions. Figures 1~a! and 2~a! display the first
images of the uniform measurem (0) under the mapsf and
f H , respectively. Figures 1~b! and 2~b! display the naturally
and the conditionally invariant measure, respectively.
nally, Fig. 2~c! displays the relative local differenced r(B)
against the position of the binB.

We observe the following.
~i! The content ofm (0) within the holeH @m (0)(H)# is

mapped outside of the intervalI 5@0,1# by the modified map
f H . Hence, the measuresmC

(1) and mN
(1) significantly differ

within the imagef 1(H). The evolution ofmC
(1) propagates

these differences at successive images of the holeH @see
Figs. 2~b! and 2~c!#. From Fig. 2~c! we see that thec measure
displayed in Fig. 2~b! significantly differs from the naturally
invariant measure only within a few successive images of
hole H.

~ii ! Sincef has a smooth maximum atxc , at the image of
the critical pointf (xc), bothmN

(1) andmC
(1) have a spike. The

spike is labeled by the letterS in Figs. 1~a! and 2~a!. The
evolution of the measuresmN

(1) andmC
(1) propagates the spik

at the iterates of the critical point@see Figs. 1~b! and 2~b!#.
From a number of similar numerical experiments th

have been performed it follows that ife!1, the relative local
differenced r(B).0 in most of the binsB. The gross differ-
ences between the two measures are found within the firl c
images of the hole, wherel c denotes some critical number. I
other words, ifB, f l(H), wherel< l c , thend r(B) is signifi-
cantly larger than zero@see Fig. 2~c!#. In most cases~but not
necessarily! l c is a small number.

To see the meaning of the grid-refinement parameteh,
consider the number of bins that cover thel th image of the
hole f l(H), l< l c . For e!1, the length intervalf l(H) is
approximately L l(j)e, where L l(j)[u d fl(x)/dxux5j .
Therefore,f l(H) is covered with approximatelyL l(j)e/eB
5L l(j)h bins B. Thus, for larger values ofh, the gross
differences between the two measures are resolved
higher resolution. It follows that by keeping the grid
refinement parameterh5e/eB fixed, the differences betwee
the two measures~e.g., thex2 value! can be studied as
function of the size of the holee with effectively constant
resolution. In most calculations presented here, we fin
sufficient to use the valueh520.

Let kxc→H>0 denote the number of iterates it takes f

the critical pointxc to be mapped to the holeH. In other
words, if xcPH, kxc→H50; if xc¹H, then for 0<k8

,kxc→H , f k8(xc)¹H, and f kxc→H(xc)PH. The measuremN

has a spike at every iterate ofxc under the mapf, whereasmC

has onlykxc→H spikes that are located at the iteratesf k8(xc),

k851,2, . . . ,kxc→H . As an illustration, thec measure dis-

played in Fig. 3~a! has only two spikes sincekxc→H52.
Therefore, it is possible that thec measure, unlike the natu
rally invariant measure, does not have spikes at the iter
03621
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of the critical point f k8(xc), k8.kxc→H . These differences
are referred to as the fine differences between the two m
sures.

III. FINE DIFFERENCES BETWEEN µN AND µC

To what extent will the fine differences be resolved d
pends on the grid-refinement parameterh and the integer
kxc→H . In order to demonstrate this, suppose thatxc is not
eventually periodic. Although the naturally invariant measu
has infinite number of spikes, only a finite number of the
will be seen on a histogram representingmN ~see Ref.@3# or
Ref. @1#, p. 54!. To be more specific, the histogram resolv
only spikes at the iteratesf k8(xc), k8<kc , wherekc denotes
some critical value. With the decrease of the size of the b
eB , i.e., with the increase of the grid-refinement parameteh
~parametersj ande are kept constant!, the critical valuekc
increases indefinitely@1,3#. Thec measure has spikes only a
the iteratesf k8(xc), k8,kxc→H . Therefore, in order to re-

solve the fine differences on a grid,h has to be large enoug
so thatkc.kxc→H . Now, consider the bins that cover th

iterates f k8(xc), kxc→H,k8<kc . Since mN has spikes at

these points, andmC does not,mN(B)@mC(B), and d r(B)
.1.

As an illustration of the fine differences between the tw
measures, Fig. 3~b! displaysd r(B) corresponding to thec
measure in Fig. 3~a!. Sincekxc→H52 is small, the condition

kc.kxc→H which is required for the observation of fine di

ferences is satisfied already forh520. The critical number
of the images of the holeH wheremC grossly differs from
mN is approximatelyl c58 –9. However, within some binsB
that are not located at the firstl c images of the hole we se
significantd r(B) values. These bins cover the spikes at t

FIG. 3. ~a! The histogram representing thec measure defined
by the parametersj50.1805, e50.001, h520, and eB5e/h
5531025. The c measure has only two spikes, atf (xc) and at
f 2(xc)5j. ~b! d r(B) against the position of the bin. An inspectio
of the differences shows that the gross differences appear within
first l c;8 –9 images ofH. The fine differences atf 13(xc) and
f 14(xc) are indicated by arrows.
8-3
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points f k8(xc), k8510, . . .,14, k8.kxc→H52. These fine
differences typically appear as sharp, isolated spikes
histogram representingd r(B).

In Fig. 2~c! the fine differences are not resolved. Sin
kxc→H corresponding to Fig. 2~c! is large (kxc→H54150), the

condition kc.kxc→H can be satisfied only for extremel

large value of the grid-refinement parameterh. For that rea-
son, we are in this case unable to numerically calculate
draw the histogram representingd r(B), which would resolve
the fine differences.

Let us consider behavior of the global discrepancy
tween the two measuresxje

2 (h) in dependence of the grid
refinement (j ande are held fixed!. With the increase ofh,
the grid resolves more fine differences between the two m
sures, and thexje

2 (h) value increases. Figure 4 displays t
x2 value in dependence onh. This numerical experimen
suggests that in the limith→`, thexje

2 (h) value converges
to some limiting valuex0

2(j,e). This result can be explaine
as follows. In the limith→`, the sum in Eq.~4! is substi-
tuted by the integral, and the measuresmN and mC by the
naturally and the conditionally invariant density, respe
tively. Therefore, given the mapf, the quantityx0

2(j,e) is
determined by the position and the size of the hole.

The analysis of the following section utilizes the conce
of the pointwise dimension. The pointwise dimension o
probability measurem at the pointx is defined as@1,23#

Dm~x!5 lim
eB→0

ln m„B~x!…

ln eB
, ~5!

whereB(x)5(x2eB/2,x1eB/2). Let us compare the point
wise dimension ofmN andmC at some point on the attracto
A. The pointwise dimension ofmN at almost every pointx
PA ~with respect to the naturally invariant measure! is
DmN

(x)5D151. The pointwise dimension ofmN differs

from D1 only at the positions of the spikes. Since the ma
mum of the map f at the critical point is quadratic
DmN

„f k8(xc)…51/2, wherek851,2, . . . @1#. Similarly, the

pointwise dimension ofmC is 1 everywhere, except at th

FIG. 4. Thexje
2 (h) value againsth. The position of the hole is

j50.955 f (xc), whereas the size of the holee50.01.
03621
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positions of the spikes. Since the spikes ofmC are located
only at the firstkxc→H iterates ofxc , DmC

„f k8(xc)…51/2, for

k851,2, . . . ,kxc→H .

IV. GROSS DIFFERENCES BETWEEN µN AND µC

In this section, for some fixed value of the parameterj
andh, and for sufficiently small size of the holee, we esti-
mate analytically, and calculate numerically the relative lo
differenced r(B), and thex2 value. This provides an analyti
cal description of the gross differences between the two m
sures.

At first, we qualitatively discuss the transition from thec
measure to the naturally invariant measure that occurs w
e is reduced to zero. From the definition of the embedd
repellerR it follows that R,A. As e decreases to zero, th
embedded repellerR gradually becomes identical to the a
tractorA, the measuremC becomes gradually identical to th
measuremN , while Eq. ~1! transforms into

mN~B!5mN„f
21~B!…. ~6!

Thus, if e is sufficiently small, thenmC(B).mN(B) in most
of the binsB @compare Figs. 1~b! and 2~b!#.

In order to make the exposition clear, two definitions a
introduced. Consider a subset of the phase space,P,I . Let
l H→P denote the smallest positive integerl for which the
sectionf l(H)ùPÞB. Let the quantityd(P) denote the dif-
ference between the two measures within the setP: d(P)
5mC(P)2mN(P).

The relative local difference within a particular binB de-
pends on the number of iterates it takes for the holeH to map
to the binB, i.e., l H→B . In order to presentd r(B) in the form
suitable for the analysis, from Eqs.~1! and ~6! we write

mC~B!.mC„f H
2 l H→B~B!…, ~7!

and

mN~B!5mN„f
2 l H→B~B!ùH…1mN„f H

2 l H→B~B!…. ~8!

Equation ~7! follows from the approximationel H→B /t.1
1 l H→B /t.1. The largest integerl H→B associated with
some bin~s! scales asl H→B; ln(1/e) for e!1 @25#, whereas
the lifetime t scales ast;e2DmN

(j) @1,12,25#. Hence, the
approximationel H→B /t.1 is valid for every binB as long as
e!1. By subtracting Eqs.~7! and ~8! we obtain

d~B!.2mN„f
2 l H→B~B!ùH…1d„f 2 l H→B~B!\H…, ~9!

and

d r~B!.
u2mN„f

2 l H→B~B!ùH…1d„f 2 l H→B~B!\H…u
mN~B!

.

~10!

The functional dependence ofd(B) @and consequently
d r(B)# on l H→B is investigated by studying the two terms o
the right-hand side of Eq.~9!. In the following subsections
8-4
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we report two types of gross differences between the
measures, i.e., we present two types of dependences ofd r(B)
on l H→B .

A. Typical correlations

If j is chosen at random, by using the naturally invaria
measure, then the orbit originating fromj is typical in the
sense that DmN

„f l 8(j)…5D151, ; l 8>0. Consequently,

DmC
„f l 8(j)…5D151, ; l 8>0 ~see Sec. III!.

Consider the bins for whichl H→B5 l ( l .0). Since
DmN

(j)51, for sufficiently smalle, the first term on the
right-hand side of Eq. ~9! can be written as
mN„f

2 l(B)ùH…;eB /L l(j), whereL l(j)5u f 8(j) f 8„f 1(j)…
••• f 8„f l 21(j)…u5ud fl(x)/dxux5j . Due to the chaoticity of
the map, the quantityL l(j) increases very rapidly with the
increase ofl. In fact, sincej is a typical point, for large
enough l the quantity L l(j);el l , where l denotes the
Lyapunov exponent of the map. Thus, if the map is m
chaotic, the quantitymN„f

2 l(B)ùH… should decrease mor
rapidly with the increase ofl.

Consider the second term on the right-hand side of
~9!. Let us observe the setf H

2 l(B) and the value ofd„f H
2 l(B)…

in dependence ofl. f H
2 l(B) is a union of small disjoint inter-

vals that map their measure toB in l iterates. Due to the
chaoticity of the mapf, the number of these intervals grow
exponentially fast with the increase ofl, and they are distrib-
uted all over the attractor. Thus, the setf H

2 l(B) becomes
more democratic with the increase ofl in a sense that the
quantityd„f H

2 l(B)… reflects the global agreement between
two measures. If the map is more chaotic, the numbe
disjoint intervals thatf H

2 l(B) is made of grows at a faster ra
with the increase ofl @20#. Thus, depending on the chaotici
of the map, the quantityd„f H

2 l(B)… will be approximately
equal to zero already for small values ofl.

From this discussion of the two terms on the right-ha
side of Eq.~9!, we conclude thatd(B) @and consequently
d r(B)# can be significantly different from zero only for sma
values ofl. In other words, the critical valuel c is typically
small @see Fig. 2~c!#.

Let us make an estimate of the relative local differen
d r(B). Generally, the depth of thel th well d(B) is described
by the following formula:

d~B!52mN„f
2 l~B!ùH…2mN~ f 2 l 1

„f H
2 l~B!…ùH !

2mN~ f 2 l 2
„f H

2( l 1 l 1)
~B!…ùH !2•••

2mN~ f 2 l n11
„f H

2( l 1 l 11 . . . 1 l n)
~B!…ùH !, ~11!

where l 1[ l H→ f
H
2 l (B) , l 2[ l H→ f

H

2( l 1 l 1)
(B) , . . . ,l n11

[ l H→ f
H

2( l 1 l 11•••1 ł n)
(B) . The integern is chosen such thatl

1 l 11•••1 l n< l c , while l 1 l 11•••1 l n1 l n11. l c , i.e.,
d„f H

2( l 1 l 11•••1 ł n1 l n11)(B)….0. From this it follows thatn
< l c , i.e., the number of terms in Eq.~11! is small.

Since the hole is narrow (e!1), and since the critica
numberl c is small, it is most likely that the setf H

2 l(B) does
03621
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not overlap the firstl c images of the holeH, i.e., most likely
l H→ f

H
2 l (B). l c . In fact, if the first 2l c images of the hole do

not overlap, i.e., if f l 1(H)ù f l 2(H)5B for l 1 ,l 2<2l c ( l 1
Þ l 2), it can be shown thatl H→ f

H
2 l (B). l c , and consequently

d„f H
2 l(B)….0. Sincej is a typical point, it is not eventually

periodic, and the conditionf l 1(H)ù f l 2(H)5B for l 1 ,l 2
<2l c ( l 1Þ l 2) can be satisfied just by makinge to be suffi-
ciently small. Therefore, in the typical case, the relative lo
difference is approximately

d r~B!.
mN„f

2 l~B!ùH…

mN~B!
. ~12!

We have already seen that the quantitymN„f
2 l(B)ùH… de-

creases approximately exponentially fast with the increas
l, mN„f

2 l(B)ùH…;1/L l(j). Therefore, the relative loca
difference decreases rapidly with the increase ofl. The criti-
cal numberl c is determined by how rapidlyL l(j) increases
with the increase ofl, i.e., l c depends on the rate at which th
images of the hole get stretched by the dynamics of the m
f. Since,mN„f

2 l(B)ùH…;mN(B);eD1, both d r(B) and l c
are independent ofe.

As an illustration, Fig. 5 displaysd r(B) as a function ofe
for the bins located at thel th image of the holeH. Note that
in this typical case, fore!1, d r(B) is practically indepen-
dent of the position of the bin withinf l(H),l< l c . This is
consistent with Eq.~12!.

Let us make an estimate of thex2 value. Most of the
contributions to thex2 value come from the bins locate
within the first l c images of the holeH. Therefore,

xjh
2 ~e!. (

l 851

l c

(
B, f l 8(H)

ud r~B!d~B!u

. (
l 851

l c

d̄ r~ l 8! (
B, f l 8(H)

mN„f
2 l 8~B!ùH…

.mN~H ! (
l 851

l c

d̄ r~ l 8!;eDmN
(j). ~13!

FIG. 5. The relative local differenced r(B) againste. The binsB
are located at successive images of the hole:B, f 2(H) ~squares!,
B, f 3(H) ~diamonds!, and B, f 4(H) ~triangles!. The position of
the holej50.40@DmN

(j)51#, and the grid-refinement paramete
h520 are kept constant.
8-5
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In the first line of Eq.~13! we have assumed that the firstl c
images of the hole do not overlap. The second line follo
from the fact that fore!1, the quantityd r(B) is practically
independent of the position of the binB within the l ’ th im-
age@see Figs. 2~c! and 5#, i.e., d r(B). d̄ r( l 8), whered̄ r( l 8)
denotes the average value of the relative local differe
within the imagef l 8(H). The third line in Eq.~13! follows
from the approximation (B, f l 8(H)mN„f

2 l 8(B)ùH…

.mN(H). This approximation is very accurate if the grid
refinement parameterh is large enough. From Eq.~13! it
follows that if mN(H) is larger, the global discrepancy be
tween the two measures will be larger as well. Furthermo
since d̄ r( l 8) is independent ofe, the xjh

2 (e) value obeys a
power-law dependence one. @Note that the power-law fol-
lows only from the conditionDmN

„f l 8(j)…5D151, and the

fact that l c is independent ofe. In other words, it is not
necessary that the first 2l c images of the hole do not over
lap.#

Figure 6 displays a test of Eq.~13! for the logistic map
(r 53.8). We see that the visiting frequency by typical tr
jectories to the hole,mN(H), determines the magnitude o
the global discrepancy between the two measures. Note
in this particular case(

l 851

l c d r̄( l 8).1 @see Fig. 2~c!#, i.e.,
x2.mN(H). The points were fitted to the functional depe
denceA0eA1. The fitted value of the exponentA1 is A1
51.02760.008, which is in good agreement with predictio
A15DmN

(j)51 @see Eq.~13!#. This shows that the approxi
mations leading to Eq.~13! are good.

B. Correlations for jÄf k
„xc…

If the position of the holej lies on an atypical point, a
completely different type of correlation between the tw
measures may occur. In this subsection, we consider the
when j lies on an image of the critical point,f k(xc)5j, k
>1. Thus,DmN

(j)51/2ÞD1. We assume thatk[kxc→H .

Consider the bins for whichl H→B5 l ( l .0). These bins
are located at thel th image of the holeH, i.e., they are

FIG. 6. Thexjh
2 (e) value againste ~closed circles!. The hole is

positioned atj50.4,DmN
(j50.4)51. The grid-refinement param

eterh520. The quantitymN(H) againste is labeled by the lettersx.
03621
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grouped around the pointf l(j)5 f k1 l(xc). The naturally in-
variant measure has a spike atf k1 l(xc). The spike is usually
oriented to the left or to the right of an image of the critic
point. For example, the spike atf (xc)50.95 in Fig. 1~b! is
oriented to the left, whereas the spike atf 2(xc)50.1805 in
Fig. 1~b! is oriented to the right. The spike can also ha
approximately symmetrical shape, e.g., whenxc maps to the
unstable fixed point in two iterates~see Fig. 8 in Ref.@2#!.
Without losing any generality, we assume that the spike
f k1 l(xc) is oriented to the left off k1 l(xc).

Consider the bins that are to the right off l(j). For suffi-
ciently smalle5heB , the two measures have the same sc
ing behavior,mN(B);eB;mC(B), and the analysis can b
reduced to the one from the preceding subsection.

To study the correlation between the two measures wit
the bins to the left off l(j), we must study the scaling of th
terms in Eqs.~7! and ~8! with eB . As the size of the holee
5heB is reduced, the setsB and f 2 l(B)ùH get closer to the
tip of the spike at f l(j) and j, respectively. Therefore
mN(B);mN„f

2 l(B)ùH…;eB
1/2. If the spike of mN at the

point f l(j) originates only from the spike atj, then
mN„f H

2 l(B)…;eB . Consequently, mC„f H
2 l(B)…;eB , and

mC(B);eB . Hence, no matter how largel is, for sufficiently
small e, mN(B);e1/2@e;mC(B), i.e., d r(B).1. In other
words, we can find some critical valueec( l ), such that for
e,ec( l ), the quantityd r(B).pt , where pt denotes some
‘‘threshold value’’ close to 1~e.g.,pt50.90).

There are approximatelyL l(j)e/2 bins that are within
f l(H), and are to the left off l(j). As e is reduced,d r(B)
corresponding to every one of these bins approaches
valued r(B)51. However, the relative local differenced r(B)
within the binsB that are closer to the tip of the spike wi
become larger than the ‘‘threshold value’’pt for smaller val-
ues ofe. As an illustration, Fig. 7~a! displays the dependenc
of d r(B) on e for B, f 3(H) ( l 53). We see that the critica
value ec,out( l ) corresponding to the outermost binBout , is

FIG. 7. ~a! The relative local differenced r(B) for the bins
B, f 3(H) againste. The parametersj5 f 1(xc)50.95 andh520
are kept constant.~b! The appearance ofd r(B) for the binsB that
are within the interval„f l(j)2L l(j)e/2,f l(j)…. The appearance is
shown for l , l c,out(e), l c,out(e), l , l c,in(e), and l c,in(e), l . The
quantitiesd r(Bin) and d r(Bout) are marked by open circles an
open squares, respectively.
8-6
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much smaller than the critical valueec,in( l ) corresponding to
bin Bin that is adjacent to the tip of the spike,ec,out( l )
,ec,in( l ). In the Appendix, it is shown that the critical va
ues ec,in( l ) and ec,out( l ) decrease very rapidly~approxi-
mately exponentially fast! with the increase ofl.

Inversely, the number of the successive images of the h
where the two measures significantly differ increases~ap-
proximately logarithmically! with the decrease ofe. Let
l c,out(e) @l c,in(e)# denote the critical number of the image
of the hole, such that forl , l c,out(e) @ l , l c,in(e)#, the rela-
tive local difference is larger than the threshold value, i
d r(Bout).pt @d r(Bin).pt , respectively#. From the depen-
dence of the critical valuesec on l, it follows that l c,in(e)
;2l c,out(e);l(j)21 ln(1/e) @see Eqs.~A4! and~A5! in the
Appendix#; the quantityl(j) denotes the Lyapunov expo
nent for initial conditionj. Figure 7~b! illustrates the depen
dence ofd r(B) on l H→B for the casej5 f k(xc).

Let us make an estimate on thex2 dependence one!1.
For e!1, the largest contribution to thex2 value comes
from the firstl c,in(e) images of the hole. Ifj is not eventu-
ally periodic, then the firstl c,in(e) wells do not overlap, and
the x2 value is approximately

xjh
2 ~e!. (

l 851

l c,in(e)

(
B, f l 8(H)

ud r~B!d~B!u. ~14!

For e!1, within most of the bins B, f l 8(H) ( l 8
, l c,in), mN(B)@mC(B). Therefore,d r(B) is practically in-
dependent ofe, while d(B);mN(B);eDmN

(j). Thus, thex2-
value dependence ofe is

xjh
2 ~e!; l c,in~e!eDmN

(j); ln~1/e!eDmN
(j). ~15!

Figure 8 displays a test of Eq.~15! for the logistic map
(r 53.8). The points were fitted to the functional depende
A0 ln(1/e)eA1. As we can see, formula~15! is an excellent fit
for the x2(e) dependence. The fitted value of the expon
A1 is A150.46. The discrepancy from the predictedA1
5DmN

(j)50.5 value follows from the fact that the approx

FIG. 8. Thexjh
2 (e) value againste ~closed circles!. The hole is

positioned at the first image of the critical point, i.e.,j5 f (xc)
50.95, DmN

(j50.95)51/2. The grid-refinement parameterh520.
The quantitymN(H) againste is labeled by the lettersx.
03621
le

.,

e

t

mations we made should hold better for smaller values oe
~see Appendix!. Note thatmN(H) decreases at a faster ra
thanx2 with the decrease ofe. This is a consequence of th
fact that l c,in(e) increases with the decrease ofe @see Eq.
~15!#.

If j is eventually periodic, than even for small values ofe,
the images of the hole overlap. Let us evaluate thexjh

2 (e)
functional dependence for the case whenf (j)5xF @ f (j)
Þj# is an unstable fixed point. In this case, the fi
l c,in(e)21 images of the hole are subsets of the ima
f l c,in(e)(H). Therefore, x2.(B, f l c,in(e)(H)ud r(B)d(B)u
;eDmN

(j). Thus, even if the position of the holej is on an
image of the critical point, due to the images of the ho
overlap we recover a power-law dependence of thex2 value
on e. We have checked this relation forj5 f 1(xc), f (j)
5 f 2(xc)5xF , by using the logistic mapf (x)54x(12x).

When the position of the holej is away from the critical
point xc , then fore!1, the firstl c images of the hole do no
start to fold. However, whenj5xc , then for eache already
the first image of the hole is folded. Since the maximum
quadratic, the length of the imagesf l(H) is ;e2, i.e., the
gross differences are observed with the resolutionhj5xc

5e2/eB . It can be shown that local correlations are effe
tively the same as for the casej5 f (xc). Furthermore, if
hj5xc

5e2/eB is held constant, thex2 value has the same

functional dependence one as in the casej5 f (xc).

V. CONCLUSION

In conclusion, we have investigated local and global c
relations between the naturally invariant measure of the o
dimensional chaotic mapf, and the conditionally invarian
measure of the transiently chaotic map with a holef H . The
two measures have been compared on a fine grid with
ments of a unit sizeeB .

We have demonstrated that the gross differences betw
the two measures appear within some critical number of
images of the holeH. Two types of gross differences hav
been reported. We have also demonstrated the existenc
fine differences between the two measures, which may oc
at the iterates of the critical point.

APPENDIX

In this appendix we study the casef k(xc)5j, k>1. Con-
sider the binsB that overlapf l(H), and are to the left of
f l(j). By considering the scaling ofmN(B) andmC(B) with
e, in Sec. IV it is demonstrated that we can find some criti
value ec( l ), such that fore,ec( l ), the quantityd r(B) be-
comes larger than some threshold valuept close to 1~e.g.,
pt50.90). Let us evaluate the functional dependenceec( l )
on l.

Consider the bin adjacent to the pointf l(j), i.e.,Bin . The
interval f 2 l(Bin)ùH is adjacent to the position of the holej.
The length of the interval f 2 l(Bin)ùH is approxi-
mately eB /L l(j). Therefore, mN„f

2 l(Bin)ùH….c1(j)
3@eB /L l(j)#1/2. Sincej is held fixed,c1(j) can be regarded
as constant.
8-7
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The pointj maps to the pointf l(j) in l iterates. Let us
denote all other points that map tof l(j) in l iterates by
x1 ,x2 , . . . ,xm , jÞxj , j 51,2, . . . ,m. Since we assume tha
the spike atf l(j) originates only from the spike atj, then
DmN

(xj )51, j 51,2, . . . ,m. The quantitymN„f
2 l(Bin)\H…

can be approximately written as( j 51
m rN(xj )eB /L l(xj ),

where rN denotes the naturally invariant density. Given
map f, the pointsxj are determined uniquely byj and l.
Therefore, we can write( j 51

m rN(xj )/L
l(xj )5c2(j,l ).

In the limit mN„f
2 l(Bin)ùH…/mN(Bin)5pt.1, equation

mN~Bin!5mN„f
2 l~Bin!ùH…1mN„f

2 l~Bin!\H… ~A1!

can be approximately written as

pt
21c1~j!F eB

L l~j!
G 1/2

5c1~j!F eB

L l~j!
G 1/2

1c2~j,l !eB .

~A2!

From Eq. ~A2! we obtain a functional dependence ofec,in
on l:

ec,in~ l !;
1

c2
2~j,l !

1

L l~j!
;

1

c2
2~j,l !

e2l(j) l , ~A3!

wherel(j) denotes the Lyapunov exponent obtained for i
tial condition j. Since the pointsf l(j) bounce around the
attractor with increasing l, the quantity c2(j,l )
5( j 51

m rN(xj )/L
l(xj ) irregularly fluctuates around some a

erage value with increasingl. As an illustration, Fig. 9 dis-
plays c2(j,l ) and 1/c2

2(j,l ) for the casej5 f 1(xc). There-
fore, since 1/L l(j) decreases exponentially fast wi
increasingl, we conclude thatec,in( l ) decreases very rapidl
~approximately exponentially fast! with the increase ofl.

By taking the logarithm of Eq.~A3!, for sufficiently large
l, we approximately write l(j) l @2 lnc2(j,l), i.e.,
ln(1/ec,in);l(j) l . From this relation we obtain an expre
sion for the critical numberl c,in(e),

ł c,in~e!;
1

l~j!
lnS 1

e D . ~A4!
tt.

03621
-

Since relation~A4! is derived from Eq.~A3! for large
enoughl, Eq. ~A4! is approximately valid for small value
of e.

Consider the outermost binBout . We can approximately
write mN„f

2 l(Bout)ùH….c1(j)(e/2)1/22c1(j)„e/2
2eB /L l(j)…1/2.c1(j)(e/2)1/2h21/L l(j). By applying the
same strategy as in Eqs.~A1! and~A2!, it can be shown that

l c,out~e!;
1

2l~j!
lnS 1

e D , ~A5!

i.e., the critical numberl c,out(e) is smaller thanl c,in(e). This
is consistent with Fig. 7~b!. The increase of bothł c,in(e) and
ł c,out(e) with the decrease ofe is approximately logarithmi-
cal. Unfortunately, relations~A4! and~A5! are derived for so
small values ofe, that we are unable to check them nume
cally.

For the bins that are located in betweenBin andBout , the
critical value ec( l ) is ec,out( l )<ec( l )<ec,in( l ). Further-
more, the critical numberl c(e) corresponding to these bins
l c,out(e)< l c(e)< l c,in(e). This is consistent with Figs. 7~a!
and 7~b!.

FIG. 9. The quantitiesc2(j,l ) ~closed circles! and 1/c2
2(j,l )

~open diamonds! againstl. The position of the hole isj5 f 1(xc)
50.95. The solid and the dashed lines present the average val
c2(j,l ) and 1/c2

2(j,l ), respectively.
ys.
@1# E. Ott, Chaos in Dynamical Systems~Cambridge University
Press, Cambridge, 1993!.

@2# J.P. Eckmann and D. Ruelle, Rev. Mod. Phys.57, 617 ~1985!.
@3# R. Shaw, Z. Naturforsch. A36A, 80 ~1981!.
@4# M. Misiurewicz, Publ. Math.53, 17 ~1981!; M. Benedicks and

M. Misiurewicz, ibid. 69, 203 ~1989!; M.V. Jacobson, Com-
mun. Math. Phys.81, 39 ~1981!; D. Ruelle,ibid. 55, 47 ~1977!.

@5# P. Collet and J.P. Eckmann,Iterated Maps on the Interval as
Dynamical Systems~Birkhäuser, Boston, 1980!.
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